Communications to the Editor

ISOLATION AND STRUCTURAL ELUCIDATION OF PYRIDOXATIN, A FREE RADICAL SCAVENGER OF MICROBIAL ORIGIN

Sir:

Oxygen-derived free radicals have been known to play a role in a variety of diseases such as autoimmune disease, cardiovascular diseases, diabetes, inflammation, rheumatism and cancer-initiation^{1,2)}. Thus, it could be expected that free radical scavengers may contribute to the control of these diseases.

In the course of our screening for free radical scavengers of microbial origin, we have isolated new active substances, naphterpin³⁾, antiostatins⁴⁾ and benthocyanin A⁵⁾. Further screening resulted in the isolation of a new free radical scavenger, designated pyridoxatin, from a fungus culture identified as *Acremonium* sp. BX86. It inhibited lipid peroxidation induced by free radicals in rat liver microsomes free from vitamin E⁶⁾. In this paper, we report the isolation and structure elucidation of pyridoxatin.

The producing organism was cultivated in 500-ml Erlenmeyer flasks containing 100 ml of a medium consisting of starch 2.5%, soybean meal 1.5%, dry yeast 0.2% and CaCO₃ 0.4% (pH 6.2, before sterilization) at 27°C for 4 days on a rotary shaker.

The mycelial cake collected by centrifugation from the fermentation broth (2 liters) was extracted with acetone. The extract was concentrated *in vacuo* to a small volume and then partitioned between EtOAc and water. The separated organic layer was evaporated to dryness and applied to a silica gel column, which was eluted with CHCl₃-MeOHconc NH₄OH (40:8:1). The pooled active fraction was concentrated and rechromatographed on a silica gel column with CHCl₃-MeOH (10:1). After evaporation of the active eluate, the dried residue

Table 1. Physico-chemical properties of pyridoxatin.

Appearance	Colorless needle
MP	195~197°C (dec)
$[\alpha]_{D}^{23}$ (c 0.09, MeOH)	-23°
Molecular formula	$C_{15}H_{21}NO_3$
HREI-MS (m/z)	Calcd: 263.1522
	Found: 263.1472 (M ⁺)
Analysis	
Calcd for $C_{15}H_{21}NO_3$:	C 68.42, H 8.03, N 5.32
Found:	C 68.20, H 8.05, N 5.56
UV λ_{max}^{MeOH} nm (ε)	218 (11,600), 288 (4,700)
$\lambda_{\max}^{MCOH + HCI} nm (\varepsilon)$	216 (10,200), 246 (3,900), 267 (3,600)
$\lambda_{\max}^{MeOH+NaOH} nm$ (E)	230 (15,900), 262 (4,700), 295 (3,600)
IR (KBr) cm ^{-1}	3300, 1630, 1560, 1550, 1530,1470, 1450, 1250

Table 2.	¹³ C and	¹ H NI	MR che	emical shift	ts of pyridoxatin
----------	---------------------	-------------------	--------	--------------	-------------------

No. –		Rotamer A (major)		Rotamer B (minor)		
	¹³ C	¹ H	¹³ C	¹ H		
2	160.4		162.7			
3	115.0		115.3			
4	163.9		163.2			
5	99.0	5.98 (d, 8)	99.9	5.98 (d, 8)		
6	132.7	7.58 (d, 8)	132.7	7.56 (d, 8)		
7	47.5	2.51 (dd, 11, 11)	48.1	2.68 (dd, 11, 11)		
8	44.0	3.06 (dddd, 12, 11, 9, 3)	45.2	2.89 (dddd, 12, 11, 9, 3)		
9	43.7	0.92 (ddd, 12, 12, 12), 1.74 (ddd, 12, 3, 2)	43.7	0.97 (ddd, 12, 12, 12), 1.74 (ddd, 12, 3, 2)		
10	33.0	1.64 (m)	33.0	1.64 (m)		
11	45.9	0.76 (ddd, 12, 12, 12), 1.77 (ddd, 12, 3, 2)	45.9	0.80 (ddd, 12, 12, 12), 1.77 (ddd, 12, 3, 2)		
12	33.0	2.43 (m)	34.1	2.28 (m)		
13	144.7	5.55 (ddd, 17, 10, 9)	144.7	5.59 (ddd, 17, 10, 9)		
14	113.0	4.66 (dd, 10, 2), 4.82 (d, 17, 2)	113.0	4.66 (dd, 10, 2), 4.79 (dd, 17, 2)		
15	23.1	0.97 (d, 7)	23.1	0.97 (d, 7)		
16	21.0	0.73 (d, 7)	21.0	0.76 (d, 7)		

ppm from internal TMS in CD₃OD. Values in parentheses show ¹H-¹H coupling constants in J = Hz.

(75 mg) was further purified by Toyopearl HW-40F column chromatography with MeOH to give a pure material. Finally, pyridoxatin was obtained as colorless needles (14 mg) by crystallization from acetone - ethyl acetate.

The physico-chemical properties of pyridoxatin are summarized in Table 1. Its molecular formula was determined as $C_{15}H_{21}NO_3$ by HREI-MS and elemental analysis.

The ¹³C and ¹H spectral data for pyridoxatin are summarized in Table 2. These NMR spectra indicated that pyridoxatin existed as a mixture of two rotamers A and B. Their ratio was estimated to be approximately 1:1 in methanol- d_4 and 2:1 in acetone- d_6 by ¹H NMR spectral analysis. For clarity, the NMR spectral analysis is explained with rotamer A.

The ¹H-¹H COSY experiment revealed the sequence from a vinyl residue (δ 4.66 and δ 4.82, 14-H₂; δ 5.55, 13-H) through four methines (δ 3.06, 8-H; δ 2.51, 7-H; δ 2.43, 12-H; δ 1.64, 10-H) and two methylenes (δ 1.77 and δ 0.76, 11-H₂; δ 1.74 and δ 0.92, 9-H₂) to two secondary methyl groups (δ 0.73, 16-H; δ 0.97, 15-H), thereby indicating the presence of a 4,6-dimethyl-2-vinylcyclohexyl moiety as shown in Fig. 1. The assignments of the methylene protons were made by spin decoupling experiments to overcome the severe overlapping of the protons at 0.7 ~ 1.8 ppm. Likewise, the presence of the same moiety in the other rotamer B was deduced by ¹H-¹H COSY and spin decoupling experiments.

The heterocyclic hydroxamic acid part (see Fig. 2) was analyzed by a heteronuclear multiple-bond correlation (HMBC)⁷⁾ experiment. The methine proton (δ 2.51, 7-H) in the cyclohexane ring was coupled to C-2 (δ 160.4), C-3 (δ 115.0) and C-4 (δ 163.9). Based on the ¹³C chemical shifts, C-2 and C-4 were assignable to phenolic or carbonyl carbons. In addition, 5-H (δ 5.98) was coupled to C-3 and C-6 (δ 132.7), and 6-H (δ 7.58) to C-2 and C-4.

By taking into consideration these relations and the molecular formula, there remained three possible structures for the heterocyclic part as shown in Fig. 2. The structure III containing a conjugated ketone function was easily excluded due to the higher chemical shift of C-4 (δ 163.9).

Upon methylation with CH_3I in acetone in the presence of K_2CO_3 , pyridoxatin gave a dimethyl ether ($C_{17}H_{25}NO_3$, HREI-MS (m/z), Calcd: 291.1834, Found: 291.1808 (M⁺)) as a mixture of two rotamers (in the ratio of *ca*. 2:1 as determined by ¹H NMR taken in CDCl₃). In the HMBC spectrum of this ether derivative taken in CDCl₃ (see Fig. 3), only

Fig. 1. Structure for the 4,6-dimethyl-2-vinylcyclohexyl moiety of pyridoxatin.

Fig. 2. The possible structures for the heterocyclic hydroxamic acid part of pyridoxatin.

Fig. 3. HMBC analysis for the heterocyclic hydroxamic acid moiety of the dimethyl ether of pyridoxatin.

Fig. 4. Structure of pyridoxatin (relative stereochemistry).

one methoxy proton signal at $\delta 3.75$ showed a long-range coupling to the carbon at $\delta 163.6$ in the major rotamer, indicating that the other methoxy group ($\delta 4.00$) must have been introduced to an *N*-hydroxyl group. Therefore, structure **II** was excluded to leave only the 1-hydroxy-2-pyridone moiety **I** for pyridoxatin. A similar phenomenon was observed with the minor rotamer.

In agreement with the conclusion, the direct ¹³C-¹H coupling constant observed with C-6 (J=186.8 Hz) was very similar to the corresponding moiety in tenellin⁸⁾ (3,4,5-trisubstituted 1-hydroxy-2-pyridone, J=183.6 Hz). The relative stereochemistry of the cyclohexane ring moiety was assigned as shown in Fig. 1 based on the analysis of the coupling constants summarized in Table 2. Thus, the methine proton (7-H) was coupled to two adjacent methine protons (8-H and 12-H) with large

coupling constants (J=11 Hz). Similarly, the methine proton (10-H) has large coupling constants (J=12 Hz) with the methylene protons (9-H and 11-H) indicating that these four methine protons of the cyclohexane ring (7-H, 8-H, 10-H and 12-H) are axially oriented. Therefore, the relative stereo-chemical structure of pyridoxatin is depicted as shown in Fig. 4. The presence of the two rotamers can be ascribed to the hindered rotation along the C-3 ~ C-7 axis.

Pyridoxatin was approximately twenty times $(IC_{50} \ 0.55 \,\mu\text{g/ml})$ as active as vitamin E $(IC_{50} \ 10.8 \,\mu\text{g/ml})$ in the assay system employed⁶⁾. Pyridoxatin inhibited hemolysis of rat erythrocytes catalyzed by 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)⁹⁾, a free radical initiator (IC₅₀ 1.95 $\mu\text{g/ml})$. So far pyridoxatin inhibited the growth of HeLa cells at the concentration of $1.0 \,\mu\text{g/ml}$ (IC₅₀), but it did not show any antimicrobial activity except in tests against *Candida albicans* (MIC 1.64 $\mu\text{g/ml})$.

Acknowledgments

This work was supported in part by a Grant-in-Aid for Co-operative Research, The Ministry of Education, Science and Culture, Japan.

> Yoshihiro Teshima Kazuo Shin-ya Akira Shimazu Keiko Furihata Ha Sang Chul Kazuo Furihata[†] Yoichi Hayakawa Kazuo Nagai^{††} Haruo Seto*

Institute of Applied Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan [†]Department of Agricultural Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan ^{††}Department of Bioengineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa 227, Japan

(Received January 30, 1991)

References

- HAMMOND, B.; H. A. KONTOS & M. L. HESS: Oxygen radicals in the adult respiratory distress syndrome, in myocardial ischemia and reperfusion injury, and in cerebral vascular damage. Can. J. Physiol. Pharmacol. 63: 173~187, 1985
- CERUTII, P. A.: Prooxidant states and tumor promotion. Science 227: 375~381, 1985
- SHIN-YA, K.; S. IMAI, K. FURIHATA, Y. HAYAKAWA, Y. KATO, G. D. VANDUYNE, J. CLARDY & H. SETO: Isolation and structural elucidation of an antioxidative agent, naphterpin. J. Antibiotics 43: 444~447, 1990
- 4) Mo, C.-J.; K. SHIN-YA, K. FURIHATA, K. FURIHATA, A. SHIMAZU, Y. HAYAKAWA & H. SETO: Isolation and structural elucidation of antioxidative agents, antiostatins A₁ to A₄ and B₂ to B₅. J. Antibiotics 43: 1337~1340, 1990
- SHIN-YA, K.; K. FURIHATA, Y. HAYAKAWA, H. SETO, Y. KATO & J. CLARDY: The structure of benthocyanin A, a new free radical scavenger of microbial origin. Tetrahedron Lett. 32: 943~946, 1991
- OHKAWA, H.; N. OHISHI & K. YAGI: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351~358, 1979
- SUMMERS, M. F.; L. G. MARZILLI & A. BAX: Complete ¹H and ¹³C assignments of coenzyme B₁₂ through the use of new two-dimensional NMR experiments. J. Am. Chem. Soc. 108: 4285~4294, 1986
- 8) WAT, C.-K.; A. G. MCINNES, D. G. SMITH, J. L. C. WRIGHT & L. C. VINING: The yellow pigments of *Beauveria* species. Structures of tenellin and bassianin. Can. J. Chem. 55: 4090~4098, 1977
- MIKI, M.; H. TAMAI, M. MINO, Y. YAMAMOTO & E. NIKI: Free-radial chain oxidation of rat red blood cells by molecular oxygen and its inhibition by α-tocopherol. Arch. Biochem. Biophys. 258: 373~ 380, 1987